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Abstract. We provide calculus rules for global approximate minima concerning usual operations on 
functions. The formulas we obtain are then applied to approximate subdifferential calculus. In this 
way, new results are presented, for example on the approximate subdifferential of a deconvolution, 
or on the subdifferential of an upper envelope of convex functions. 
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O. Introduction 

The concept of approximate minimum is very important in optimization for theori- 
cal as well as practical reasons. For example, due to some imprecision on the data, 
the question of finding optimal solutions of the problem 

minimize a real function f over the set X 

may be considered as solved if we are able to produce elements x of X such that 

x E e-argmin f := {x E X :  f(x) <_ i~f f + e} 

for e > 0 sufficiently small. On the other hand, the advantage in dealing with 
approximate minima of a minorized function f ,  is the nonvoidness of e-argmin f 
for any e > 0. 

In the first part of the paper we give some elementary calculus rules for approx- 
imate minima. The results we obtain are shown to be applicable to subdifferential 
calculus in the second part. This is not too surprising as approximate minima and 
approximate subdifferentials are linked together by Legendre-Fenchel transform. 
However, the notion of approximate minima is intrinsically more general than the 
one concerning the approximate subdifferential. The reason for this is very simple: 
defining approximate minima on X does not require any structure on the set X. Let 
us compare in details these two concepts when X is a locally convex topological 
space (Lc.s.) paired in separated duality with another Lc.s. W; in such a frame, 
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which is the more natural for dealing with Legendre-Fenchel duality theory, the 
conjugate of an extended real valued function f : X ~ ~ is given by 

f* (w)  = sup{< x , w  > - f ( x ) }  forany w E W .  
xEX 

The conjugate of an extended real valued function on W is defined in analogous 
terms. The biconjugate of f is then f** = (f*)*. It is well known that, for a proper 
function f : X ~ TZ (proper means f is not identically +c~ and never takes 
the value -c~) ,  f = f** iff f belongs to the set P0(X) of lower-semicontinuous 
(g.s.c.) proper convex functions on X. Given r _> 0 ,  and a function f �9 X ~ ~ ,  
finite at x, one defines the r of f at x as follows: 

Osf(x)  = {w E W "  Vu E X : f ( u )  - f ( x )  >_ < u -  x , w  > - e } .  

Without further assumptions, one has, 

Osf(x)  = {w E W :  f * ( w ) -  < x , w  > + f ( x )  < e} ,  (1) 

Of course, a similar notion does exist for functions defined on W. 
On the other hand, the e-argmin of  an extended real valued function ~ on a set 

Z is defined, when m := infz~z ~(z) E R,  by 

e-argmin ~ = {z E Z "  ~(z) _< m + e} .  

If m = - c ~  we set e-argmin qo = 0 for all e > O, and also r-argmin ~p = 0 
(resp. O~f(x) = O) for all r < O. 

For any x E f - l ( R ) ,  w E W, the obvious relation 

x E e -a rgmin( f -  <,  w >) ~ w E Oef(x) 

gives a first connexion between the concepts of approximate minima and approxi- 
mate subdifferential. When f -  <, w > is minorized we also have 

e -a rgmin ( f -  < , w  >) = {u E X : f ( u ) -  < u , w  > +f* (w)  _< e} ,  (2) 

a formula that may be compared with (1). 
Notice that the implication, 

x E e-argmin f ',- x E O~ f* (0) , 

is always true, but the converse, 

x E O~ f*(O) ---> x E e-argmin f ,  

is true if and only if f ( x )  = f**(x); this condition does not systematically hold in 
the application we have in view. However: 
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PROPOSITION O. 1. Let f : X -+ ~ and x E X be such that 

- o o  < f**(x) < f ( x )  < + e c .  

Then, setting 5(x) = f ( x )  - f**(x), we have, foral l  r > O, 

Osf(x) = 0 for e E [0,5(x)[ 
OEf(x) = Oe_~(x)f**(x) for e _> 5 ( x ) .  

In particular, 

x E e-argmin f ~ x E O~_~(x)f*(0) . 
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Proof. For all w E W,  w E Osf(x) iff 

f ( u ) > _ f ( x ) + < u - x , w > - e ,  f o r any  u E X .  

As f and f** have the same affine minorants, the line above is equivalent to 

f**(u) > f ( x ) +  < u -  x , w  > - ~  = f**(x)+ < u -  x , w  > - r  + 5(x), 

for any u E X ,  

that is to say 

w E 

For the last equivalence we have, as f* = f***, 

0 E Oef(x) = O~_6(z)f**(x) -'. '.- x E OE-e(z)f*(O) �9 ,, 

The next proposition shows explicitly that the problem of  computing an approxi- 
mate subdifferential is reducible to an approximate argmin problem. 

PROPOSITION 0.2. Let f ,  x, and 5(x) as in Proposition 1. Then, for any ~ > O, 

O~f(x) = (c - (5(x))-argmin(f*-  < x , .  > ) .  

Proof For each w E W one has w E Oef(x) = O~_6(~)f**(x) iff x E 
O~_~(~)f*(w), iff 0 E O~_~(~)(f*-- < x , .  >) (w) ,  iff w E ( r  
5(x))-argmin( f*-  < x , .  >).  �9 
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1. Calculus Rules for Approximate Minima 

In this section we give formulas concerning the approximate minima of usual 
operations on functions like sum, difference, composition, inf-convolution, decon- 
volution, upper envelope, lower envelope... To this end we shall use some notations 
and properties. 

The addition (resp. subtraction) of extended real numbers will be taken in the 
following sense: 

Va, b E T C ' a + b = + c ~  whenever a = + c ~  or b = + c ~  

(resp. a - b  = a +  (-b))  . 

When dealing with inequalities, we systematically use the following properties 
([18] p.l18), valid for all a, b, c E 7~: 

a + b < _ c  ~, > 3d, e E T r  a < d ,  b < e ,  d + e = c  (3) 

a + b < c  ~ 3d, e E T r  a < d ,  b < e ,  d + e = c .  (4) 

If, moreover, a and b are nonnegative, then d, e above can be chosen nonnegative. 
The domain of an extended real valued function qo �9 Z --~ T~ is denoted by, 

dom ~ = {z E Z "  ~(z) < +c<)} , 

while, 

.~(~)  = { ( z , , ' )  C Z x ~ �9 ~,(z) <_ r } ,  

will be the epigraph of qo. 

1.1. A DIRECT APPROACH 

We begin with approximate minima of a sum of two minorized functions. 

PROPOSITION 1.1. Assume that the functions, 

~, r  z - ,  n u {+oo} ,  

are minorized on the set Z, and that qo + r is proper. Then, for any e >_ O, 

e-argmin (~ + r  = U el-argmin ~ fq e2-argmin r  
e1>0,~2>0 

~1 q-e2=~d-7--ct--fl 

w i t h a = i n f z  ~, f l = i n f z  ~b, 7= in fz (qo+~b) -  
Proof. Observe that 7 >- a + ft. For any z E Z, z E e-argmin(~ + ~b) means 

~ ( z )  - ~ + r  - 9 _< ~ + 7 - ~ - 9 .  
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As ~(z)  - a and r  -- /3 are nonnegative, (3) shows that the line above is 
equivalent to the existence of  E1 _> 0, E2 _> 0 such that el + E2 = E + 7 - o! - / 3 ,  
and ~(z)  - o~ < el,  r  - / 3  _< E2, that is to say 

Z E U el-argmin ~p M e2-argmin r . 

~1_>0,~2>0 
~1 +e2=~+7--tx--3 

The computation of  the approximate argmin of a difference of  functions involves 
the difference of  sets: for A, B subsets of  Z we denote 

A \ B = { z E Z ' z E A  and z ~ B } .  

PROPOSITION 1.2. Let cp, r �9 Z ---+ ~ U {+co} be proper. Assume that r and 
- r are minorized on Z. Then, for any E > O, 

E-argmin (qo - r  = rq u r-argmin ~ \ (r  + o~ - / 3  - 3 - ~)-argmin r  
r/>E r>0  

witho~=infz  ~, / 3 = i n f z  r  ~ - r  
Proof. Let us note t h a t ~  is necessarily minorized with ce > 5 + ft. Let  z be 

any e-minimizer of  ~ - r  For all ~ > E one has ~(z)  - r  < ~/+ 5 , so that 
(~(z)  - o~) + (/3 - r  < z / +  5 + / 3  - ol. By (4) there exist r, s E T~ such 
that ~ ( z ) - o ~ < r ,  / 3 - r  < s, r + s = ~ 7 + 5 + / 3 - o ~ .  Now, r i s  
necessarily positive and we have 

z e N U r-argmin ~ \ (r + o~ - / 3  - 5 - ~)-argmin r :=  S .  
'r/>E r>0  

Conversely, let us take z E S. For any ~ > e there exists r > 0 such that 
~(z)  < o~ + r and r  > r + o~ - 5 - r/, so that ~(z)  - r  < 5 + ft. Hence 
~o(z) - r  < 5 + e, that is, z E e-argmin~ - r  ,, 

Propositions 3, 4, and 5 below concern two important classes of  functions: com- 
posite functions and marginal functions with explicit or implicit constraints. Here 
X is another set, G : X ~ Z an application, and F: X ~ Z a multiapplication; to 
each function ~ : Z ~ ~ U {+c~} are associated the composite function, 

o a .  x n u {+oo } ,  o a ) ( x )  = 

and the marginal function, 

~ r "  X ---+/~ U {+oo} qor(x) = inf{qo(z) �9 z E F x } ,  

with the usual convention inf 0 = +oo.  We note G -1 (resp. F -1) the inverse 
relation of  G (resp. F). 
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PROPOSITION 1.3. Assume that ~ is minorized and dom ~o Cl G ( X )  # O. Then, 
for any e >__ O, 

e-argmin ~p o G = G -1 ((e + / 3  - oe)-argmin ~o) , 

with a = in fz  r 13 = in fx  ~p o G .  
Proof. First we note that - c ~  < a <_ /3 < +cx~. Then, x is an e-minimizer 

o f ~ o o a i f f c p ( a ( x ) )  < /3 + e, or ~ (a ( x ) )  <_ a + /3 - a + e, or G(x) E 
(e + / 3  - a) -argmin g), that is x E G - l ( ( e  + [3 - a)-argmin ~o). �9 

PROPOSITION 1.4. Assume that ~o is minorized and dom g) M F(X) # 0. Then, 
for  any e >_ O, 

e-argmin ~or = N p-1  ((7 - c~ + ~)-argmin ~ ) ,  
r/>e 

with a = infz  % 3' = inf r (x)  qo. 
Proof Here we have - c ~  < a <__ 7 < +oo.  Moreover, x is an e-minimizer 

of ~ r  iff for each ~/ > 0 there exists z E P(x)  such that ~o(z) _< 7 § e + r/ = 
+ 7 - c~ + e + ~/, iff x E ~n>o P -1 ( (7  - a + e + r/)-argmin ~o). �9 

When no explicit constraints occurs, that is when, 

f ( x )  = inf F ( x , z )  
zEZ 

with F �9 X x Z --* Tr U {+c~},  Proposition 4 can be applied by putting F instead 
of  qo and F: X ~ Z,  F(x)  = {x} x Z.  We then obtain, denoting by P the projection 
of  X x Z onto X:  

COROLLARY 1.5. Assume that F is proper and minorized. Then for any e > O, 

e-argmin f = N P(r/-argmin F )  . 
r/>e 

Proof Here, i n f x  f = i n fx  x z F and P = F - I  . 

Another formula is needed when we are faced with the following situation: (~ i ) ie i  
is a family of  proper functions qgi : Z ~ 7"r tO {+c~} indexed by I ,  an arbitrary 
nonvoid set. We will express the set of  e-minimizers of  9~ = infieI  ~i in terms of 
approximate minimizers of  ~i. Let  us set 

oz i= infcp i  for any i E I ,  a = i n f z  ~o. 

Then oL = infi~i  o~i. I f  99 is minorized, that is if the cpi are equi-minorized, the set 
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is nonvoid for any 7 > 0. 

P R O P O S I T I O N  1.6. Let (qoi)iep qo = infiez qoi, (a i ) iez ,  a, and 1(7) be as above. 
Then, for  any e >_ 0, 

e-a rgmin~  = N LJ ( a - o q + 7 ) - a r g m i n q ~ i .  
n> e iEI (n  ) 

Proof  For each z E Z,  the following lines are equivalent: 

z E e-argmin 

~ / 7 > e  3 i E I : ~ i ( z )  < a +  

V7 > e 3i E I : z E (oe -- c~i + 7)-argmin ~oi 

V7 > e 3i E I (7 )  : z E (c~ -- a~ + 7)-argmin ~o~ 

z e N U (o~-o~i + 7 ) - a r g m i n ~ i .  
n>~ iEZ(n) 

The presence of  a i  in formula above may be avoided, at least for e = O. This fact 
is a mere consequence of  

L E M M A  1.7. For all ~ >_ O: 

('1 (_J 7-argmin ~i C e-argmin ~ C ~ (.J 7-argmin qoi. 
~>~ <I(,7) ~>~ iez(~) 

Proof Assume that z ~ e-argmin qo; then there exists 7 > ~/2  such that 
qo(z) > o~ + 27. Now, for any i E I (7) ,  ~i (z)  _> ~(z)  > ai  + 7, so that z r 7- 
argmin~i,  and the first inclusion is proved. To prove the second inclusion let us 
consider any 7 > e. Then, for all z E e-argmin qo, we have ~(z)  < o~ + 7 and there 
exists i E I such that o~i < ~i (z)  < a + ~1 = o~i + (a  - o~i) + 7 -< o~i + 7, so that 
z E 7-argmin ~i, with i E I (7) .  

In the particular case ~ = 0 we get: 

P R O P O S I T I O N  1.8. Let (qoi)i6z be a family o f  equi-minorized proper functions 
on the set Z, qo = infiE I qoi. Then, 

argmin ~ = N U 7-arg m i n ~ i "  
,7>0 i~z(,7) 

In the case when, 

Vz E argmin ~ ,  3i E I : ~(z)  = ~ ( z ) ,  
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we have, 

argmin ~ = LJ argmin ~i , 
iEI(O) 

M. VOLLE 

Vi E I : inf cpi = oLi E ~ .  z 

We assume that r is proper; hence, 

+c~  > o~ :=  i n f r  >_ sup o~i :=  fl > - c ~ .  
Z iEI 

Let us take e > 0 and z E e- argmin r We then have, 

~i(z)  _< o~i + e + a - o~i for any i E I ,  

so that, 

z E r l  (e + a - a i)-argmin ~ . 
iEI 

By introducing for each B > 0 the nonvoid set, 

we easily see that, 

z E ~ ~ (e + t~ - / 3  + ~/)-argmin ~oi, 
n>0 iEIn 

so that, 

e- argmin r C ('1 N (e + o~ - / 3  + 7/)-argmin ~Pi �9 

where, for any ~l >- O, 

I ( ~ 7 ) = { i E I : i n f z  ~ -  < i ~ f ~ p + ~ / } "  

Proof We only have to prove the second formula for which the inclusion D is 
clear. Let  Us take z E argmin ~. By assumption, there exists i E I such that, 

inf ~i < ~i(z) = ~(z)  = inf ~o < i~f ~ i ,  
Z - -  

hence, i E I (0)  and z E argmin ~i �9 �9 

We now consider the case of  an upper envelope r = suPiei ~oi where ~oi : Z 
7~ U { + ~ }  is proper and minorized for any i E I: 
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In fact the converse inclusion also holds. To see this assume that z ~ r 
r  Then there exist i E I and 5 > 0 such that qoi(z) > a + ~ + 6. By taking 
71 = / 3 - a i + S w e h a v e 7  l > O,i E I ~ , a n d ~ i ( z )  > a i + e + a - / 3 + T ]  , so that z 
(e + oL - / 3  + ~)-argmin qoi. 

Hence we have proved: 

PROPOSITION 1.9. Let ( ~ i ) i E I  , ~) = supie,r ~i, a,/3, and I n be as above. Then, 
for  any e >_ O, 

r r = N N (e + a - / 3  + ~/)-argmin ~o,. 
7/>0 iEI ,  7 

Up to now, Z was an arbitrary set; let us supposed that Z is endowed with a 
structure of additive group. 

For any proper functions f ,  g : Z ~ ~ U {+oc} the inf-convolution ([18], 
[21]) of f and g is given by 

(ft:]g)(z) = inf f ( z -  u) + g(u) forany z e Z . 
u E Z  

A kind of inverse operation to the preceding one has been introduced ([11], [17], 
...) for solving inf-convolutive equations: 

find ~ E ~ z  such that g [ ] ~ = f .  

It has been shown that such an equation admits solution iff the deconvolution of f 
and g, namely 

( f S g ) ( z ) = s u p { f ( z + u ) - g ( u ) : u E  domg}, V z E Z ,  

is one of them. Geometrically, the deconvolution is linked with the star difference 
of sets. Recall that, given two subsets C, D of Z, the star difference of C and D is 
defined as follows, 

C - D =  N C - x = { z E Z ' z + D c C } .  
x E D  

It is known ([26] Prop. 6) that the epigraph of f [] g coincides with the star difference 
of the epigraphs of f and g: 

:r 

E ( f S g )  = E ( I )  - E(g )  . 

Also, 

d o m f [ ] g  C dom f - dom g .  



140 M. VOLLE 

Then, one may imagine that the approximate minima of f [] g can also be expressed 
in terms of the star difference of  the approximate minima of f and g. The proposition 
below makes this idea more precise. 

PROPOSITION 1.10. Assume f ,  g : Z ~ 7"4 U {+c~} proper, minorized. Then for 
any e > O, 

e-argmin f 8 g  = N (e + ce - fl + z/)-argmin f - z/-argmin g , 
7>0 

with a = infz f 8 g  > infz f - infz g = fl �9 
Proof. We apply Proposition 9 by putting 

/ = d o m g ,  ~ u ( z ) = f ( z + u ) - g ( u )  for any u e  domg, z e Z .  

Then ~b = f 8 g, I T = ~?-argmin g, A-argmin ~u = A-argmin f - u for any A > 0, 
and we have: 

e-argmin f B g =  N N [(e + o~-- fl + z/)-argmin f ] - - u  
7>0 ~,~n-argming 

= N (e + a - fl + z/)-argmin f - ~-argmin g . ,, 
7>0 

Of course, Propositions 6 and 8 can be used to compute the approximate minima 
of an inf-convolution (or epigraphical sum). Such a question has been considered 
in [3] [1], where some estimations are given. Here we give exact general formulas. 

PROPOSITION 1.11. Assume f ,  g : Z ~ 74 U {+c~} proper, minorized. Then, 

argmin f [] g = N ~-argmin f + ~-argmin g ,  
7>0 

where + denotes the algebraic sum of sets. 
Proof. Apply Proposition 8 by taking I = dom g, ~ ( z )  = f ( z  - u) + g(u) 

for any (u,z)  E d o i n g  x Z. Then ~ = f[]g, infz~p = infz f + i n f z g ,  
I(z/) = ~-argmin g, ~-argmin '~u = ~-argmin f + u, and we have: 

argmin S []g = N U z/-argmin f + 
n>0 u~n-argmin g 

= N ~-argmin f + z/-argmin g .  �9 
n>0 

Due to the special form of the inf-convolufion, we have, for e > 0, an improvement 
of  Proposition 6: 
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PROPOSITION 1.12. Assume f ,  9 " Z ~ R U {+oo} proper, minorized. Then, 
for any e > O, 

e-argmin f [] g = N U 
6>e ,51>082_>0 

61 +62=6 

t~ 1 -argmin f + 62-argmin g �9 

Proof. Recall that infz f [] 9 = infg f + infg g. Now let z be a e-minimizer of 
f []g, and 6 > e. There exists u E Z such that f ( z -  u)+g(u) < infg f + i n f g  g + 
6, o r f ( z  - u) - infz f + g(u) - infz g < 6. By (4) there exist 61 > 0, 62 _> 0 
such that 61 + 62 = 6 ,  0 ~ f (Z -- U) -- infz f _< 61, 0 _~ if(U) --  infz g _< 62 SO 

that 

z = (z - u) + u E 61-argmin S + 62-argmin g ,  

z ~ N U 51-argmin f + 62-argmin9. 
6>e 61 ->0, 62_>0 

61 +62=6 

Conversely let z be as above; then for any 6 > e, there exist 61 _> 0, 62 ~ 0, 
61 + 62 = 6, Zl E 61-argmin f ,  Z 2 E 62-argmin 9 such that z = z 1 + Z2, hence 

(S[]g)(z) _< f ( z l )  + 9(z2) _< t~ 1 q- t~ 2 q- i~f f + mzf g = 5 + infz f D g '  

thatis z E 6-argminf[]g f o r a n y 6  > e, so tha t z  E e-argminfDg. 

In the case when the inf-convolution f Dg is exact, that is for any z E Z there 
exists u E Z such that, 

(frng)(z) = f ( z -  u) + g(u) , 

the previous formulas can be simplified as follows (see also [2]). 

PROPOSITION 1.12 bis. Let f , g  �9 Z ---* 7"4 U {+oo} be proper and minorized. 
Assume that f D 9  is exact. Then, for any e >_ O, 

e-argmin f [] g = U 
e 1 >0, e2>O 
~1+~2=~ 

el-argmin f + e2-argmin 9 .  

In particular, 

argmin f [] 9 = argmin f + argmin 9 .  

Proof. As f [] 9 is exact, z E Z is a e-minimizer of f []9 iff there exist 
u, v E Z such that u + v = z and f (u)  + #(v) < i n f z ( f  [] 9) + e or, equivalently, 
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( f (u)  - infz f )  + (g(v) - infz g) < e .  By (3) this is equivalent to the existence of 
e I ~_~ 0, e 2 __~ 0 s u c h t h a t  C l - b e  2 = e a n d ( f ( u ) - i n f z  f )  <_ el, (g (v ) - in f zg )  < 

e2. In other words: 

z E  U 
el >0,e2_>0 
el+e2-~e 

el-argmin f + e2-argmin g .  

We now give a result of topological nature. 

PROPOSITION 1.13. Let Z be a topologicalspace, ~ : Z ---+ ~ U  {+c~} proper, 
minorized, -~ the lower semicontinuous regularized of qo. Then, for any e > O, 

e-argmin~ = N d(6-argmin~)  . 
6>e 

Proof Let us set m = infz ~. As ~ is the greatest Ls.c. minorant of % we 
have m ___ ~ _< qo, hence infz ~ = m. We then obtain, 

e - a r g m i n ~ = { z E Z : ~ ( z ) < m + e } =  n c g { z e Z : q ~  <_m+6} 
6>e 

N d(&argmin~)  . 
6>e 

We end this section with a result concerning the minimizers of the Ls.c. convex 
hull of a given function. Let f : ~ n  __+ ~ U {+c~} be a Ls.c. proper function that 
we suppose coercive in the following sense, 

3e>0, 3c  e:f>_ellll-e. (5) 

This assumption ensures that the asymptotic function fo~ of f ,  that is 

f ~ ( u ) =  l iminf t f ( v ~  forany u E T ~  n 
(t,v)~(o+,~) \ u  

satisfies 

argmin foo = {0}. (6) 

Indeed, (5) implies fo~ _> eli [[, and, as f ~ ( 0 )  = 0, we easily get (6). 
Now, let us consider the biconjugate (or closed convex hull) f** of f ;  the 

function f being Ls.c. and epi-pointed in the sense of [4], we have by ([4] p. 18), 

argmin f** = co argmin f + co argmin foo (7) 

and by (6), 

argminf** = co argmin f . 
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Hence we have proved: 

PROPOSITION 1.14. Let f " ~ n  ~ T~ U {+c~} be a proper Ls.c. function 
satisfying (5). Then, 

argmin f** = co argmin f . 

1.2. THE USE OF A DUAL VARIABLE 

We return to the problem of finding the approximate minimizers of a sum, yet 
considered in Proposition 1. In this proposition ~ and 4 were defined on an 
abstract set. Here we suppose that they are defined on a g.c.s. Z paired in duality 
with another Lc.s. Y, but we don't retain the fact that ~ and 4 are minorized: we 
just assume that ~ + 4 is proper and minorized, and set 

m = i~f(~ + 4 ) .  

To each y E dom ~* n ( - d o m  4")  := A, we associate the nonnegative real 
number, 

~(p) = ~*(y) + 4 * ( - y )  + - ~ .  

Let us consider y E A. An element z of Z is an e-minimizer of ~ + 4 iff 

[ ~ ( z ) -  < z, y > +~*(y)] + [ r  < z, y > + r  < ~(y) + e .  

Each function of z into the brackets admits zero for infimum, while the infimum 
of their sum is 5(y). Applying Proposition 1 and (2) we get: 

PROPOSITION 1.15. For any functions ~, r �9 Z ~ 7~ U {+c~} such that ~ + r 
is proper and minorized, we have for all e > 0 and all y E dom ~* n ( - d o m  ~*)~ 

e-argmin(~p+~b) = U 
e 1 ~0, e2>O 

el-be2=eq-6(y ) 

e l -a rgmin(~-  <, y >)  N e2-argmin(r <, y >),  

where 5(y) = qo*(y) + r  + infz((p + r 
A classical way to obtain the existence offf E A such that 5(if) = 0 is to require 

the convexity of ~ and r together with the continuity of (p at a point of d o m r  
([20]). In such a case: 

COROLLARY 1.16. Assume that qo and 4 are convex with ~ finite and continuous 
at a point of  dom 4. Then there exists ~ C dom ~* n ( -dom 4") such that, for all 
e>_O, 

e-argmin(~ + r  = U 
el_>O, e2_>O 

e l -a rgmin(~-  < , ~  >) n e2-argmin(r <, f f  >). 
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In particular, for  such a ~, 

argmin(~o + r  = argmin(qo- <,ff  >) n argmin(~b+ <,ff  > ) .  

A similar approach may be used for the approximate minimizers of a difference 
functions ~ -  r  with ~o- r proper and minorized. Following Toland-Singer duality 
scheme ([23] [24]), we associate to each y E dom ~o*M d o m r  the nonnegative 
real number, 

d~(y) = r  - ~o*(y) - mzf(~ - r  

An element z of Z is a e-minimizer of qo - r iff, 

[~(z)-  < z,v > +~* (v ) ] -  [ r  < z , v  > +r <_ ~ -  6(v). 

Taking into account the fact that both functions of z into the brackets have zero for 
infimum, while their difference admits -~ (y )  for infimum, Proposition 1.2 and (2) 
give us: 

PROPOSITION 1.17. Let % ~ : Z --~ 7~ U {+cxD} be proper functions such that 
qo - ~b is proper and minorized. For any y E dom ~*fq dom ~b* and any r > 0 one 
has, 

e-argmin(~ - r  = 

N LJ r-argmin(~o- < , y  >)  \ (r + ~ ( y ) -  ~/)-argmin(r < , y  > ) ,  
r/>r r>0  

where 5(y) = ~b*(y) - ~*(y) - in fz (~  - r  

When ~ E Po(Z),  6(y) may be chosen arbitrarily small for: 

inf{6(y) : u E dom ~* n dome*}  -- 0 ([23] [24]). 

Moreover: 

COROLLARY 1.18. I f  there exists ff E dom cp* M domr  such that infz (qo- ~b) = 
~* (~) - ~* (if), then, for all e >_ O, 

e-argmin(cp-r  = ~'] LJ r-argmin(cp- <,ff  > ) \ ( r - r l ) - a r g m i n ( r  < , f f  > ) .  
r/>e r>0  

Let us now consider the case of an affine composite function. Here (X, W) 
and (Z, Y) are two couples of paired g.c.s., L �9 X ~ Z a continuous linear 
application, L* �9 Y ~ W its transpose, zo E Z, A(x) = z0 + L(x) for any x E X,  
~o : Z --+ 7~ U {+cx~}. We assume that the affine composite function, 

e X ,  ~ (~  o A ) ( x )  = ~(zo  + L~)  e ~ u { + ~ } ,  
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is proper and minorized. To each y E kerL* N (~*)-1(7-r we associate the 
nonnegative real number 

5(y) = ~ * ( y ) -  < z0, y > + i n f  ~ o  A .  
X 

We then have, for any r > 0 and any y E ker L* M (qo*)-l(T~), 

~-argmin ~oA = {x E X ' ~ ( z o + L x ) -  < zo+Lx,  y > +~*(y)  < r  

As the function ~ -  <, y > +~*(y)  admits zero for infimum, we have, 

e-argmin ~ o A = {x E X "  zo + L x  E (~ + 6(y))-argmin(~-  <, y > } .  

Therefore, we have proved: 

PROPOSITION 1.19. Let A �9 X --+ Z be an affine continuous mapping defined 
by A ( x )  = L ( x )  + zo for  any x E X ,  with L �9 X ~ Z linear, and q9 �9 Z ---+ 
7r U {+c~} a function. Assume that ~ o A is proper and minorized. Then, for  any 

y E kerL* M (qo*)-l(Tr wehave, f o r a l l c  >_ O, 

r ~ o A = A- I ( ( r  + 5(y))-argmin(~-  <, y > ) ) ,  

where 5(y) = ~* ( y ) -  < zo, y > + in fx  qo o A .  
When qo is convex and ~ is finite and continuous at a point of A ( X )  there exists 

E kerL* fl dome*  such that ([22]) (~(~) = 0. In such a case we obtain: 

COROLLARY 1.20. Let A, L, ~o be as in Proposition 19. Assume, moreover, 
that ~ is convex, finite and continuous at a point o f  A ( X ) .  Then, there exists 

E kerL* M dom g~* such that, f o r a l l e  > O, 

e-argmin ~ o A = A-l(e-argmin(~ - < , y  > ) ) .  

2. Approximate  Subdifferential Calculus 

2b. COMPLEMENTS ON THE APPROXIMATE SUBDIFFERENTIALS OF AN INF- 
CONVOLUTION AND A N  IMAGE FUNCTION 

In this section X and Z are two g.c.s, paired in duality with W and Y respectively, 
L : X --+ Z a linear continuous operator, L* �9 Y --+ W its transpose. We will give 
new results about the approximate subdifferentials of the inf-convolution of the 
proper functions f ,  g " X --~ Tr U {+c~}: 

( f  t2g)(x) = i n f  ( f ( x  - u) + g(u)) for all x E X .  (8) 
c x  
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Also, we consider the image of f under L (e.g. [21] p. 38), namely: 

fL(z)  = i n f { f ( u ) "  Lu = z} for all z E Z .  (9) 

When the infima are attained in (8) and (9), that is when there exist ul,  u2 E X 
such that, 

( fDg) (x )  = f ( x -  Ul)-}- g(ul)  e n ,  

fL(z)  = f(u2) E T~ with Lu2 = z , 

then, the approximate subdifferentials can be expressed as follows ([9]), 

Oe(fDg)(x)  = U Oe,f(x - -  Ul) I"] Oe2g(Ul) , (10) 
el~0,e2_~0 
el+e2=e 

OefL(z) = (L*)- l(oef(u2))  . (11) 

In such a case, we observe that the knoweldge of the approximate subdifferentials 
of f and g (resp. f )  at a well chosen point is sufficient for computing 0~(f Dg)(x) 
(resp. OEfL(X)). 

Recently, the case when the infima in (8) and (9) are not attained has been 
investigated in [12], [19]. It appears that the knowledge of f and g (resp. g) at 
many points is required: namely, 

O ( f D g ) ( x ) =  A U c O J ( x - u )  M O~g(u) ([12]Thm. l .1 ) ;  
e>O uEX 

OefL(z) = N U (L*)-l(or N N (L*)-'(O~+~f(u)) 
~f>o Lu=z 6>0 uES(6) 

([18], Thm. 1), 

with S(5) := {u E X : Lu  = z, f (u )  <_ fL(z)  + 5}. The next propositions show 
that, in spite of the fact that the infima are not necessarily attained in (8) and (9), 
formulas similar to (10) and (11) hold (for the convex case see also [14] Thm 
4.2.8). 

PROPOSITION 2.1. Let f ,  g " X ~ 7-r {+c~} beproperfunctions andx apoint 
of  X where ( f Dg) (x) is finite. Then, for any u E X such that f ( x - u ) + g( u ) E 7"~, 
we have, for all e > O, 

Oe(fDg)(x)  = [,.J 
~l_~0,~2k0 

e 1-be2=e-b6 

O ~ f ( x  - u) A O~2g(u) , 

where 6 := f ( x  - u) + g(u) - ( fDg) (x )  . 
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Proof. Taking into account the classical formula ( f  Dg)* = f* + g*, we have 
w E Oe( fng) (x )  iff (see (1)) 

+ < x , w  > + ( f D g ) ( x )  _< e ,  

that is 

[ i f ( w ) -  < x -  u , w  > + f ( x -  u)] + [g*(w)-  < u ,w  > +g(u)] _< e + 6 .  

By Fenchel inequality the numbers into the brackets are nonnegative. Hence, by 
(3), the above line is equivalent to the existence of el _> 0, e2 _> 0, C1 q- e2 ---- C q- (~, 

such that, 

f * ( w ) -  < x -  u , w  > + f ( x  - u) <_ el, g* (w) -  < u ,w  > +g(u) <_e2, 

or, in other words, w E Oclf(x - u) N Oe2(u ). 

In the same way one has (see also the proof of Cor. 2 in [19]): 

PROPOSITION 2.2. Let f ,  L be as above, and z E ( f L ) - l ( ~ ) .  Then, for  any 
u E X such that Lu =- z and f (u) E T~, we have, for  all e >_ O, 

cgefL(z ) = (L*)- l (oe+sf(u))  , 

where 5 := f ( u )  - fL(z).  
Proof. From the well known formula (fL)* = f* o L*, it follows that y E 

o, fL(z) iff, 

f * ( L * y ) -  < z, y > +fL(z )  <_ e ,  

that is, 

f * ( L * y ) -  < Lu, y > + f ( u )  = f * ( L * y ) -  < u ,L*y > + f ( u )  < e + 5 .  

This says exactly that L*y E O~+,sf(u), i.e. y E (L*)-l(oe+,sf(u)). ,, 

2.2. SUBDIFFERENTIAL OF AN UPPER ENVELOPE OF CONVEX FUNCTIONS 

Let us consider an arbitrary family (f~),~eA of proper convex functions defined on 
a topological vector space X.  There exists a formula, due to Valadier [25], for the 
subdifferential of  the upper envelope, 

f = sup f ~ ,  
~EA 

at any point x E X where f is finite and continuous. In the case when X is normed 
this formula may be written, 

Of(x)  = A -6-6 {Of~(u) : ~ E A v , u E x + ~ B}  , 
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where, 

A ,  = {a  E A"  f~ ( x )  > f ( x )  - rl} , 

and/3 is the unit ball of X.  
It has been shown in [29] that Of(x )  can be expressed in terms of the approxi- 

mate subdifferentials of the fa  at the same point x. The proof in [29] is based on 
Valadier formula. Here we propose a direct proof which uses our previous results 
about e-argmin calculus, but we restrict ourselves to the finite dimensional case 
X = T4 n. We retain the same hypothesis, that is, 

f is finite and continuous at x E 7"4 ~ . 

It follows that there exists an open neighbourhood V of x such that each fa  is 
majorized on V and, consequently, 

f ~ ( u ) = f * * ( u )  V a E A ,  V u E V .  

Due to the local character of the exact subdifferential, we then have, 

Of(x )  = 0(sup ]**)(x) . 
o~EA 

Now let us set, 

~o = inf f * .  
czEA 

One has, 

~* = sup f** , 
sEA  

and, by Proposition 0.2, 

O f ( x )  = argmin (qo**- < x, .  >)  
= argmin (~o- < x, .  >)** 
= argmin ( in fe r )**  , (12) 

aEA 

where, 

Ca := f ~ -  < x, .  > , 

so that, for any r/_> 0, 

~-argmin Ca = Onf**(x) = O, ff,~(x) . (13) 

Let us introduce the function, 

r = inf r  
c~EA 
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AS ~: and its Ls.c. hull ~b have the same closed convex hull, one has by (12), 

O f ( x )  = argmin(~)** . 

Now, the continuity of  the convex function f at z E dom f amounts to the existence 
of  e > 0 and c E ~ such that, 

f < Ix+eB -- c ,  (14) 

where, for any u E ~'~, Ix+eB(U) = 0 i f x  -- u E eB ,  + ~  if not. 
By  taking the Fenchel transforms in both member  of  (14) we get, 

r  <x,.  >_> ~11 II+c, 

so that ~ does satisfy the condition (5) required in Proposition 1.14. 
Hence  we have, 

O f ( x )  = co argmin if:, 

and, by  Proposition 1.13, 

O f ( x ) =  co N c -a rgminr  C N ~-6(c-argminr . 
s >0  r 

Moreover,  by lemma 1.7, 

e-argmin ~b C N U r/-argmin ~,~. 

From (13) we obtain, 

OS(x) c N N U 
e>0 r/>r c~EA~ 

Finally, we get the more simpler inclusion, 

Of(x) C N U ..fo(x). 
~7>0 a E A  n 

A very nice thing is that the reverse inclusion holds ! As a matter of  fact we do 
have for any 7? > O, a E A n , 

Orlf,~(x) C 02, f ( x )  . 

Indeed, w E Ovfc,(x ) entails, for all u E T~ n, 

f ( u )  >_ fc,(u) >_ f e , ( x )+  < u -  x , w  > - r  l >_ f ( x ) +  < u -  x , w  > - 2 r  1 . 
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As a2nf (x)  is closed convex, it ensues that, 

c--6 U anfc~(X) c a2nf(x), 
a E A  n 

and the announced inclusion follows by taking the intersection over all ~l > 0 .  
Hence we have proved: 

THEOREM 2.3. Let ( fs )aEA be a family of  proper convex functions on TCno 
Assume that, 

f = sup f s  
a E A  

is finite and continuous at a given point x ofT~ n . Then, 

a S ( x )  = N ~ {an f~ (x )  : a E An},  (15) 
n>0  

with A n := {a  E A : f ~ ( x )  >_ f ( x )  - ~7} . 

The formula (15) can be simplified in the following situations: 

THEOREM 2.4. Let (fs)aEA, f ,  and x be as in Theorem 2.3. Assume, moreover, 
that the function, 

yETCn~ , inf f*(y)  
s E A  

Then, 

a S ( x )  = N 
n>o 

If, in addition, 

Vy ~ af(x), 

then, 

is Ls.c . .  

co { a n f a ( x  ) �9 a E A n } .  

3/~ E A:  inf f*(y)  = f~(y)  
s E A  

Of(x)= co U a S s ( x ) ,  
sEAo  

M. VOLLE 

Of(x)  = coargm . r C N co U ~7-argmin C s ,  
n>O s E A  n 

where, for  any~l >__ O, A n = {a  E A " f a ( x )  >__ f ( x )  - ~l} . 
Proof. By assumption, the function %b = infsEA %bs, %bs = f~*-- < x, .  > , is 

g.s.c. Following the same way as in Theorem 2.3 we obtain, 
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hence, 

Of(x)  C r-] co U 0'Tf'~(x) C r] 02r~f(x)= O f ( x ) .  
~/>0 o~GA n r/>0 

To prove the second formula, we use the second part of Lemma 1.8, noticing that 
argmin ~ C Of(z)" 

Of(x)  = coargmin r = co U argmin r 
aCAo 

= co U o A ( z ) .  �9 
aEAo 

REMARK. A standard way to satisfy the assumptions of the above Theorem is to 
suppose that A is a topological compact space, and for each z C 7r n, the function 
a C A , ~ f,~(z) is upper-semicontinuous. Such a condition is used in [13] 
Theorem 4.4.2 to obtain the second formula in Theorem 2.4. Here, our proof is 
totally different. 

When dealing with the upper envelope of just two Ls.c. convex functions from 
Ts ~ to 7~ U {+oo}, 

f = max(f l ,  f2) = f l  V f 2 ,  

another formula may be derived from the argmin formula (7). 
Let us assume that f is finite and continuous at some point ~ of 7r n. In other 

words, 

3ff > O, 3C C 1~ " f < I '~+sB -- C. , 

min;r ~*~ or, equivalently, with f~ A f~ = Wl, 32 ], 

f~ A f ~ -  < ~,. >>_ f * -  < ~,. >__ ~11 II + c. 

This means that f~' A f*2 is epi-pointed in the sense of [4]. 
Let us now consider z E dom f l  r3 dora f2 such that, 

f l  (~) = f 2 ( ~ ) ,  

and set, 

~ ) i = f * - -  < Z , .  > 

By (7) we then obtain, 

(i = 1,2) . 

argmin(r A r = co argmin(r A r + co argmin(r A r (16) 
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Now we have, by introducing the asymptotic cone, 

A o o =  A [0,c]A, 
e>0 

of a subset A of a topological space ([5], [6] .... ), and denoting by E(qo) the epigraph 
of a functional qo, 

E(~bl A ~/;2)oo = (E(~bl A ~b2))oo (see, e.g. [6]) 
= u E( 2))oo 
= E(~bl)~ U E(~b2)oo ( [8] Prop. 1.2). 

Consequently, 

(if31 /k ~2)oo = (~1)oo /k (~2)oo (see also [41). (17) 

On the other hand, the functions ~bl, ~b2, (~bl)oo, (~b2)oo admit zero for infimum. By 
(16) and (17) we then obtain, 

argmin(gal A ~b2)** = 

co(argmin ~bl U argmin ~b2) + co(argmin(~bl)oo U argmin(~b2)oo) . 

Now, for i = 1, 2, 

argmin ~bi = Ofi(x) (see Prop. 0.2)) , 

while (~bi)cr is the support function (e.g. [15]) of 

dom ~b* = - x  + dom f i  �9 

From this fact, we get, 

argmin(r  = {w C 7-r n" Vu E dom f i  :< u - x, w > _< 0} ,  

the normal cone of fi at x (e.g. [15]): 

argmin(r  = N(dom fi, x ) .  

As, 

co(N(dom f l ,  x) U N(dom f2, x)) = N(dom f l ,  x) + N(dom f2, x ) ,  

we can state: 

THEOREM 2.5. For any Ls.c. convex functions f l ,  f2 from T~ ~ to ~ U {+(x~}, 



GLOBAL MINIMA AND SUBDIFFERENTIAL CALCULUS 153 

finite and continuous at a same point, we have, at each point x o f  7"~ n such that 

f l (x )  = f2(x), 

O(fl V f2) (x )  ---- CO(0fl (X) U 0 f2 (x ) )  + N ( d o m  f l ,  x) + N ( d o m  f2, x ) .  

REMARKS. 1) If f l  and f2 are finite and continuous at x, then N(dom fl ,  x) -- 
N(dom f2, x) = (0}, and we recover a classical formula ([7]). 

2) For a possible extension and improvement of Theorem 2.5 to infinite dimen- 
sional spaces see [29] Th. 2, [27], Th. 6 bis. 

2.3. SUBDIFFERENTIAL OF A DECONVOLUTION 

Of course, Theorem 2.3 can be applied to compute the subdifferential of the decon- 
volution (see Section 1) of two proper functions f ,  g on Rn. In such a case, we 
have to take A = dom g and, for all u E A, 

fu( . )  = f ( .  + u) - g(u) . 

Assuming f convex and f Sg finite and continuous at x we then obtain, 

o ( s [ ] g ) ( x )  = N U Oof(x + u), 
r/>0 uEA~ 

withA, 7 = { u E T z ~ : f ( x + u ) - g ( u )  >_ ( f B g ) ( x )  - rl} . 
Moreover, noticing that, for any y E 7~ n, 

inf ( f~)*(y)  = f * ( y )  + inf (g(u)--  < u , y  >) 
uE dom 9 uE dom 9 

= f * ( y )  - g * ( v ) ,  

we can applied the second formula of Theorem 2.4 provided f*  - g* is assumed 
to be Ls.c. and, 

0 f ( x )  C U 0 g ( u ) : =  0 g ( n ~ ) .  
uE dom g 

In such a case we then have, 

O ( f S g ) ( x )  = co U O f ( x  + u) , 
uCAo 

with A0 = {u E d o m 9 "  f ( x  + u) - g(u) = ( f S g ) ( x ) }  . 
We have therefore proved: 

THEOREM 2.6. Let f and g be proper functions on ~ ,  with f convex, f*  - g* 
Ls.c., and, dora f*  C O g ( ~ ) .  Then, at each point x o f ~  ~ where f S g  is finite 
and continuous, 

O ( f S g ) ( x ) =  co U O f ( x + u ) .  
uEAo 
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REMARKS. (1) The assumptions of Theorem 2.6 are universally satisfied when 
9 is Ls.c. and strongly coercive, 

lim g(u) 
, + ~ + ~  II~ll 

- -  q - c < )  , 

for we then have Og(~ '~ ) = 7"4 '~ . 
(2) In Theorem 2.6, the functions, 

are not necessarily u.s.c., so that the corresponding assumption of [13] Thm 4.4.2 
is not satisfied. 

Due to the specific form of the deconvolution, another approach is possible. For 
this, we shall assume that f and 9 belong to 1-'0(X), where X is a Lc.s. paired in 
duality with another Lc.s. W .  It has been shown in [28] that, in the special case 
when 9" is continuous and finitely valued and f* - g* is convex, Of B9 appears 
to be the parallel star difference of Of and Og. Namely: 

e o ( y B g ) ( x ) . :  ' .. �9 e O y * ( w )  Og*(~ , )  . 

More explicitely, 

O(f~g)(x)  = (w E W "  x + Og*(w) c Of*(w)} 
= { ~  e W :  Vu e X ' ~  e Og(~) ~ ~ e Of(x  + ~)}, 

so that w does not belong to O(fBg)(x ) iff there exists u E X such that w E 
Og(u) fq ((W \ Of(x + u)). 

Hence we have proved: 

PROPOSITION 2.7. Let X, W be g.s.c, in duality, f ,  g E P0(X). Assume that g* 
is finite over W and that f* - g* E 1-'0(W). Then, for all x E X, 

O(f[]g)(x) = ('] Of(x + u) U (W \ Og(u)) . 
u E X  

Concerning the approximate subdiffemntials one has: 

PROPOSITION 2.8. Let f ,  g E 1-'0(X), and assume that f* - g* E 1-'0(W). 
Then, for any c > O, 

O~(fBg)(x) = N ~ O~+~,f(x + u) U ( W \  &,g(u)) . (18) 
)~>0 u E X  
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Proof As f*  - g* E Fo(W), it follows that ( [10] ) ,  

( fBg)*  = f* - 9" .  

Hence,  for each r _> O, 

w E Oe(f[]g)(x) ", ', x E O~(f* - g*)(w).  

Applying ([16], Thm. 1), we get, 

Oe(f* - 9*)(w) = N - o~9" (~)  
k>0 

so that, fol lowing the same lines as for r = O, we obtain (18). 

When  the stringent assumption f*  - 9" convex is not satisfied, one must take 
another  way. We still assume that f and 9 belong to P0(T~ n) and, in addition, that 

h = f [] 9 is finite and continuous at x E T~ ~ . (19) 

N o w ,  

0h(x) = argmin h * -  < x, . > 

= a rgmin( f*  - 9 " -  < x , .  >)** 
= co(a rgmin( f*  - 9 " -  < x, . > ) )  

(as h E F0(TCn)) 

(as h* = ( f*  - 9*)**) 
(by (19) and Proposit ion 1.14) 

For  any u E dom 9 (whence x + u E dom f ) ,  let us introduce the functions, 

~ = f * - < x + u , . > ,  r  < u , . >  �9 

We have infTe- ~p = - f ( x  + u), infn,~ ~b = -g (u) ,  r -a rgmin~ = Or f ( x  + u) 
s -a rgminr  = O~ g(u), so that, by Proposition 1.2, 

a r g m i n ( q o - r  = co n U Orf (X+U)  \O~g(u) ,  
r/>0 r>0 

with, 

s :=  r - ~l + ( f B g ) ( x )  - f ( x  + u) + 9(u) .  

It follows that, 

Oh(x) c 

(20) 

To prove the other inclusion in (21), let us take ~ > 0 ,  r > 0, and u E dom g; 

for  any w E O~f(x + u) \ Osg(u) there exists v E ~ n  such that for  all z E Tr 

f ( v +  z ) -  f ( x  + u )  >_< v +  z - x - u , w  > - r  

N c o  U c%f(x + u) \ Osg(u) �9 (21) 
7>0 r>0 
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9 ( ~ )  - 9 ( ~ )  > <  ~ -  ~ , ~  > + s .  

Taking into account the value of s given by (20), we deduce, 

h(z) >_ S ( v +  z) - g(v) >< z - u, w > +h(x)  - ~ , 

hence w E Onh(x ). Consequently, for any ~ > 0, we have, 

U Orf(x +u) \ O~9(u) C Onh(x), 
r>O 

and, as Onh(x ) is convex, 

co U o~S(x +~) \ o~g(~) c a,h(x). 
r>O 

Taking the intersection over all 7/> 0, we get the opposite inclusion to (21). Hence 
we have proved: 

THEOREM 2.9. Let f ,  9 be proper convex g.s.c, functions on T~ n. Assume that 
the deconvolution f []9 is finite and continuous at z E Ti n. Then, for  any u E dom 
g, 

O( fBg) (x )  = N c o  U O~f(x + u) \ O~g(u), 
r/>O r>0 

with s := r - ~ + ($Bg)(x)  -- f ( x  + u) + 9(u) . 
/ 

REMARK. If the deconvolution is exact at x, that is if there exists u C dom g such 
that f ( x  + u) - g(u) = ( f  Bg)(x  ), it comes, 

O( fB9) (x )  = N c o  U Orf(x  + u) \ Or- ,9(u) .  
r/>0 r>0 
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